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Methods of laser separation of isotopes on the basis of different physicochemical prop- 
erties of excited and unexcited molecules [i] have recently been intensively investigated. 
In particular, the use of the influence of selective excitation on the condensation process 
seems to be attractive. As yet sufficiently reliable experimental data permitting comment 
on the selectivity of the process of molecule condensation from the gas phase are lacking. 
Theoretical deductions on the selectivity of the process [2] are based on the assumption 
that the excitation energy goes mainly over into the kinetic energy of the condensing mol- 
ecule, resulting in its rapid evaporation. 

i. The investigation undertaken in this paper is based on the assumptions excluding a 
noticeable selective effect in molecule condensation from a gas onto a macroscopic condensed 
phase surface~ We shall consider the free path length I of a migrating vibrational excita- 
tion Ey, determined principally by the correlation radius of density fluctuations in a fluid 
or nonideal crystal, to be large compared to the mean intermolecular spacing lo. During V-- 
T relaxation of the excitations the energy needed for evaporation B is collected from (E~ + 
B)/B molecules to which excitation can reach in the best case No ~ (1/lo) s/2. Since the Y 
probability that a condensing molecule will fall into this group is on the order of Ey/BNo, 
the mean probabilities w of the evaporation of molecules of the unexcited i and excited 2 
components are referred as 

where ~2 is the initial concentration of the excited component. Here and below we consider 
one of the components completely excited for simplicity, while the other is completely not 
excited. The considerations presented apparently also refer to the case of electron excita- 
tion of one of the components with the sole difference that l can be substantially greater, 
especially in the crystalline phase.* 

Within the framework of our assumptions, molecule excitation by one of the components 
therefore does not result in noticeable selective effects. However, let us note that the 
situation is completely changed if the process of excited molecule condensation is examined 
in a moderate cluster of the liquid phase containing N << No molecules. 

For a finite cluster, it is evidently necessary to subsitute N0-~-N, and the probabil- 
ity of evaporation of the component being excited increases. On the other hand, ifN,~Nt ~ 
ET/B(as is possible in the utilization of electron excitation when ET>>B),), relaxation of 
the excitation energy results in evaporation of the whole cluster~ In other words, the clus- 
ters with size N~N" being formed during homogeneous condensation do not, in practice, con- 
tain molecules of the excited component. It is understood that selectivity will gradually 
be lost as the nucleus grows. 

2. Turning to a sequential theoretical analysis of the homogeneous condensation pro- 
cess with the participation of excited particles, we write the integral kinetic-balance 
equation [3] 

*It is possible that the results obtained are even applicable to islands of condensate on 
the surface. 
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F ( N , E ) =  E S de{~i(N--e~,e)F(N--ei ,  E - - B - - e ) - -  
i=1,2 

- - = ~ ( N , E , e ) F ( N , E ) - - ~ ( N , e ) F ( N , E ) + ~ , i N + e ~ , E  + B + e , e ) F ( N + e ~ , E +  B + e ) }  ( 2 . 1 )  

for the nucleus distribution function F(N, E), where N = { N~, N2} is the number of molecules 
of the isotopic components in the nucleus, E, energy of the nucleus, ~i(N, ~) and ai(N , E, 
r molecule fluxes of the i-th component with energy E into and out of the nucleus, re- 
spectively, andei, unit vector in the i-th direction. The expression for the condensation 
coefficients has the form 

~,(N, e) = ~e~(N)pi(e) (i = l ,  2), 

where ~i are the volume concentrations of the components in the gas phase; ~(N), totalparticle 
flux in the nucleus, which is proportional to the area of its surface ~; Pl energy distribu- 
tions of the component in the fluxes. As above, assuming without limiting the generality 
that the first component is not excited while the second is completely excited, we obtain: 

p~(e + E~) = p,(e) _~ p(@. 

Using the fundamental assumption on molecule deactivation during condensation, we find the 
evaporation coefficient a i from the detailed balance condition for nonisothermal condensa- 
tion. Neglecting the thermodynamic differences in the isotopes, we obtain 

Ni q)(N - -  •, E - -  B - -  8) 
=i (N, E, e) ---- ~ -  ~ (N -- t) p (e) r (N, E) ' 

where r E) ~ exp(--U/kT) is the nonisothermal equilibrium distribution function, N = Nz + 
N2; 

{ a ( r )  ( E - - E N ) 2 }  
U ( N , E ) = - - k T  Nlns---X-T-cr ~A'NN 

is the minimal work of nucleus formation; s, supersaturation; ~(T), surface tension 
coefficient; E N = Ta'(T)o--const N--, total isothermal energy of the nucleus (we Select 
const = O) ; 

AN ---- (kT)~(cpN- T~a"(T)cO 

(Cp is the fluid specific heat). 

Let us solve (2.1) by the method of moments. Calculating the zeroth and first center 
moments of (2.1) in the concentration of the excited component, we obtain the following equa- 
tion : 

0 = p'(e)X(N--I, E--B--e)--p(e) ap'(N-l' E - - B - - 8 ) X  ( 2 . 2 )  
. ~' (~r E) 

• X (N, E) -- p' (e) X (N, E) + p (e) O" (Iv + t. B B + s) x ( N + t ( E + B + s ) ,  

S ( r E--B--8) 0 =  de P ' (e)  Y (N - -  i ,  E - -  B - -  e) - -  P (e) O ' ( N , E )  • 

O" (N, E) Y (N+I ,  E + •  r  

i p' (e) Y (N - -  t ,  E - -  B - -  e) + : B + e ) - - ~  

P, llx2 + ~ (p~ (e) - -  p (e)) X (N - -  1, E - -  B - -  e)}, 

where 

x (N, E) - ~ (N) ~ F (S, E); 
N2 

Nl+N2=const 

N2 
N1+Ns=const 



in the stationary case. For not too high supersaturations (in s ~ i), it is possible to go 
over t6 a distribution continuous in N. Then to second-order accuracy, we find from (2.2) 

- -  ~ V~AjX + ~ D~V jVkX  --  0; 
j jl~ 

-~ ~ ,~ (vjr, v~v~r, wv,,.x, v~x), V j A j Y  + ~ DjkVjVkY - -  -g Y - -  ~ V~X --  
5 #h 

(2 .3a)  

(2.3b) 

where 

(0 0) 
V - (Vl, V~) = g~, b-E ; 

' l D ') = { t B 0 + 6 / 2 '  I 
D=-- (,D D (2),1 ~ A/2/; B~ + 6/2 B(o'>+ 

t )'Al = ( VI lnO '+BoV ~lncD' ) 
A =  

',A2] !,,BoV11n (1)' +'Bg"V~ l n *  ' + 8 ;+  

B o = S ( B + s ) p d e ;  B ( o : ) = S ( B + e ) : p d e = B ~ q - ~ i ;  

~t = ~2 S (U + e)(P2 -- P) ds = ~qE~; A -- ~, S (B + e)' (p~ -- p) ds. 

(2.4) 

From the very beginning we shall be interested just in the asymptotic of the solution as 
N + ~. Then the expression for A from (2.4) is simplified 

/ B~ 1 i ln s - -  --~-~ 
A = | B(o~)E , (2.5) 

'~Bolns--  Na + 6  
\ / 

where d = (kT)2cp. We also consider E/N << Bo (slight overheating) in deriving (2.5). Now 
we calculate the zeroth and first moments in the energy from (2.3a) 

_ B o ) dz] d l n s - - E ~ - ~  1 +  =0; (2 .6a)  d N ,  

--d-~ f +  Bolns E - ~ + 8  [ + . ~ E / - - 2 D d / = O ,  (2.6b) 
x 

where 

/=S x(N,e>d ; I x<w'E>E"de" 
From (2.6a) we obtain 

0n s - ~B0md) / -- d/ 

Where I is the total flux. Hence, under the usual boundary conditions on the boundedness 
of f at infinity, we find an expression for f and I in terms of the functions E(N): 

S dN 
I - - I+ -4-' i = / ( t )  

N 

{;. - ,) } tp (N) = exp (In s - -  E (N) ~ dN , 

(2,7) 



which differs from that obtained in the theory of isothermal condensation [4] by an effective 
reduction in the supersaturation because of overheating 

In s -+ In s - -  EBo/Nd -~ in s'. (2 .8)  

E(N) 
~2. Substituting (2.6a) into (2.6b), we obtain an equation to determine 

- -  ~ ~-.ff ] 1 - ~  -4- I Bo ln s -}- 8 --  E Tv-d / : "~ - dN dN "{'- " d '~  - "~'~'~ :=0. (2 .9)  

Without trying to obtain a more general solution of system (2.7), 
is satisfied by the physically unique solution 

= • x = eonst, 
[ = I / ln  s' = eonst. 

Here ~ is determined from the quadratic equation 

(2.9)~ let us note that it 

(2.10) 

(2.11) 

in which the lesser root should be selected 

d In s-6 B(~ ( V lB~176 
�9 g = 2 B  ~ i - -  t { d  I n s  q-  B(oZ) ) '  ' 

(2 .12)  

since it is evident that ~ should vanish as the heat transfer increases without limit 
~2 § ~ (isothermal limit). From the condition in s' > 0 we find a constraint on the maximum 
intensity of the lasting effect by using (2.8) and (2.11) 

8 = ~2Ev < In SB-- ~As~ ~-~ 8cr, (2 .13)  

where condensation ceases because of overheating of the system if (2.13) is not conserved~ 

Let us now proceed to solve (2.3b)o The right-hand side can be discarded in the 
asymptotic limit N + ~. Evaluating the zeroth and first energy moments as in (2.3a), while 
taking (2.5) into account, we obtain 

where 

~ B o ) d2 
- -  . -~ . -y f  = O; (2.14a) 

dN 

(2.145) s T" y E / =  

= E) dE; yE" = Y (Jr, E) E"dE. 

We neglect the central third-order moment of the distribution Y(N, E) to close the system 
of equations (2.14) by setting approximately 

y'E 2 ~ .  2E(yE --  y. E} + Y"-~2. 

Then, considering ~a ~ ~2 as before, and using (2.6b), (2.10), (2.11), we reduce system 
(2.14) after simple calculations to the form 



where z = yE- y . E .  

dN 2 s ~-~. N -- d dN \ N ]' 

d'z ln , dz ( B~2)-- Bo• ) Z dy ~16 
aN--- ~ - -  s -d-f - -  t + 7~ - A  = 2 ( B o - -  • d-~ N ' 

The solution of this system for N § ~ has the asymptotic form 

N , c~ - -  ra in  2, 1-'if-7' ' 

A : B~ 
(d + o - in , ' )  

(2.15) 

N 

The negative sign of y corresponds to depletion of the clusters in the excited component. 
Substituting (2.11) into (2.15), we obtain for the coefficient A 

A : B~ ~tl6 EV 

Bo(Bo+6)+(d+~a2 ) ( l - - l n s )  "~ ~ o o -  [h~t'B~o' (2.16) 

since d = ~2 = (kT) 2, B~ = (i0--i00) (kT) a and ~ < ~cr < Bo in the absence of a gas carrier. 
The limit depletion of clusters in the excited component sets in, as is seen from (2.16), 
for 

N ~ N '  = ~1~o, 

which is in complete agreement with the approximate result presented at the beginning of the 
paper. This agreement permits the hope that the obtained asymptotic results are valid in 
order of magnitude and in the domain of finite dimensions N~N'. 

In the general case of incomplete excitation of both isotopic components, the mean 
concentration c(N) of the primarily excited component is determined by the expression 

0 -- C O -- 

c (N) = co + ~ Y (N),  

where Co is the concentration of this component in the gas phase; e, fraction of excited 
particles of this component out of the total number of excited particles, which character- 
izes the selectivity of the excitation; ~2, ~t, as before, the total concentrations of the 
excited and unexcited particles of both species in the gas phase, respectively. The separa- 
tion factor n = c/c0 equals 

1 > ~1 ( N )  , ~  1 (0  - -  Co) 8 :t  0 - -  c o CoB o IN - -  I ~2E~' ( 2 . 1 7 )  c o B o N 

It is seen that incomplete excitation substantially diminishes the separation since even in 
Ehe maximum depletion domain in the excitation N~N', we have 

i > ~ > 1 - -  ~J (0 - -  Co). 
% 

The expediency of using electronic excitation for which Ey and ~2/Co are generally approx- 
imately an order of magnitude greater than for the vibrational excitation, follows from 
(2.17). Setting e -- co ~i, Ey/Bo ~ i0, ~2/Co ~ 0.i and N = 20, we obtain ~ = 0.95 in this 
case. 

The influence of molecule excitation on the homogeneous condensation of a mixture of 
isotopes has been examined in the simplest case of a spatially homogeneous system with given 
supersaturation. The most convenient method of realizing homogeneous condensation is 



apparently condensation in gas jets. The complications occurring here have not been ana- 
lyzed in detail in this paper. Let us just note that the existence of a domain of values 
characterizing the regime of the PrOcess of the parameter pod*~ where po is the initial 
gas pressure in the jet, and d* is the nozzle diameter in which condensation is terminated 
by the formation of clusters with N ~ 20-30, for which noticeable separation can be expected 
from (2.17), while on the other hand the fraction of fluid far from the nozzle is almost a 
maximum, follows from the results in [5]. These results apparently carry over to our case 
as well with the difference that termination of condensation in the presence of condensation 
corresponds to the reduction of the effective supersaturation in s' = 0, i.e., sets in for 
finite supersaturations In s = ~2EyBo/~ 2 > 0. 
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THEORY OF THE KINETIC COOLING OF A CO2--N2 MIXTURE WITH A HIGH CO= CONTENT 

V. N. Varakin and V. Ya. Panchenko UDC 539.196:621.378.385 

Resonance absorption by CO~ molecules of radiation upon the intermodal transition 
(i00)'(001) (or (020)--(001)) leads to nonstationary cooling of the gas [i], due mainly to 
the flow of energy from the translational degrees of freedom into the deformation mode of 
the C02 as a result of the process of V--T relaxation. An investigation of the effect of 
kinetic cooling of carbon dioxide under the action of radiation is of interest for problems 
in oscillation kinetics (determination of the relaxation time, analysis of the operation of 
molecular gas lasers) and in the propagation of radiation through gaseous media (autonomous 
thermal effect). 

Theoretical studies have thus far been conducted on the phenomenon of kinetic cooling 
for atmospheric conditions (the case of low C02 concentrations) [2, 3]. Experimental in- 
vestigations have been conducted on cooling with mixtures with partial CO= concentrations 
of Xc02 = 10-s-i [4-7] at a gas temperature of To < 400~ The measured values of the 
kinetic-cooling parameters were in satisfactoryagreement with the results of numerical 
calculations [7, 8] performed on the basis of a "thermodynamic" model [9]. In [I0] a theo- 
retical investigation was conducted on the channel of relaxation of the state of C02 (001) 
which made the main contribution to the variation of gas temperature. 

In the present study we obtained analytic expressions for the parameters of the cooling 
of a mixture of gaseous COz and N2 over wide ranges of C02 partial concentrations and of in- 
tensities of the exciting radiation; we investigated the temperature dependence of the effect 
in the 200-1200~ range, which enabled us to establish the temperature region in which the 
phenomenon of kinetic cooling exists. We also considered the problem of optimal insertion 
of the energy of a light pulse for cooling a molecular system. 
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